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ABSTRACT

In this paper we refine a previously developed acoustic-source filter (Bahauddin & Rast 2021),

improving its reliability and extending its capabilities. We demonstrate how to fine-tune the filter

to meet observational constraints and to focus on specific wavefront speeds. This refinement enables

discrimination of acoustic-source depths and tracking of local-source wavefronts, thereby facilitating

ultra-local helioseismology on very small scales. By utilizing the photospheric Doppler signal from a

subsurface source in a MURaM simulation, we demonstrate that robust ultra-local three-dimensional

helioseismic inversions for the granular flows and sound speed to depths of at least 80 km below the

photosphere are possible. The capabilities of the National Science Foundation’s new Daniel K. Inouye

Solar Telescope (DKIST) will enable such measurements of the real Sun.

Keywords: The Sun (1693) — Solar physics (1476) — Solar photosphere (1518) — Helioseismology

(709) — Solar granulation (1498) — Solar oscillations (1515)

1. INTRODUCTION

Solar acoustic waves are thought to be emitted by

discrete dynamical events in and below the solar pho-

tosphere. These waves couple to the global modes, and

their high frequency components propagate upward into

the solar atmosphere where they may play an impor-

tant role in heating (e.g., Biermann 1946; Schwarzschild

1948; Kalkofen 2007; Abbasvand et al. 2020; Molnar

et al. 2023). Multiple mechanisms for the excitation of

solar acoustic waves have been proposed (e.g. Lighthill

1952, 1954; Stein 1967; Stein & Nordlund 1991; Goldre-

ich et al. 1994; Rast 1995, 1999), with some work point-

ing to the importance of Reynolds-stress induced pres-

sure fluctuations by nearly sonic or slightly supersonic

turbulence and other suggesting an important role for

radiative cooling and downflow plume formation in the

photosphere. There is observational support for both of

these mechanisms (e.g., Rimmele et al. 1995; Chaplin

et al. 1998; Goode et al. 1998; Straus et al. 1999; Strous

et al. 2000; Skartlien & Rast 2000; Severino et al. 2001;
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Bello González et al. 2010; Roth et al. 2010; Lindsey &

Donea 2013), but it is still unclear which of them is dom-

inant, how well each couples to the global p-modes, and

whether one or the other is more important for generat-

ing the waves that contribute to atmospheric heating.

Identification and careful characterization of solar

acoustic sources requires separating the source and the

local wave field it produces from the background convec-

tive flows and p-modes. This is difficult because the am-

plitudes of the individual sources and the emitted waves

are typically much smaller than those of the granulation

and the p-mode coherence patches (with signal-to-noise

ratios, SNRs, well below unity). Moreover, the spectral

content of the source signal overlaps that of the acoustic

modes and, in part, also that of the background granular

motions. Consequently, direct observation of the source

wavefield remains challenging and linear image filtering

and frequency domain noise reduction techniques fail in

direct detection.

Despite these difficulties, progress has recently been

made (Bahauddin & Rast 2021) in identifying acous-

tic source sites in an MPS/University of Chicago Ra-

diative MHD (MURaM; Vögler et al. 2005; Rempel

et al. 2009; Rempel 2014) simulation of solar convection,

based solely on their photospheric signatures. In that
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work, a convolutional filter was developed that, via high

frequency temporal differencing, suppressed the granu-

lation background and allowed direct visualization of the

local source wavefield in the simulated photospheric time

series. Several key features of the acoustic sources were

revealed: they are clustered on mesogranular scales, usu-

ally occur in intergranular lanes, and often at depths

corresponding to ∼ 50% hydrogen ionization (Bahaud-

din & Rast 2021). With the NSF’s Daniel K. Inouye So-

lar Telescope (DKIST Rimmele et al. 2020) now being

commissioned, the high spatial resolution and temporal

cadence required by the filter will be achievable with

observations. This will allow determination of whether

these same properties hold for the real Sun.

Although powerful, the acoustic source filter devel-

oped in Bahauddin & Rast (2021) has some problems.

First, convolutional filters carry the inherent risk that

the result one achieves is biased by the convolution one

applies, that the pattern one is looking for is imprinted

on the data by the convolution itself, and second, the

neural network that underlies the filter was trained on

the ideal Green’s function response, but the wave front

observed is often only approximates that solution. These

issues can produce false positive and false negative de-

tections. In this paper, we demonstrate that both can

be mitigated by eliminating the convolution component

of the filter and applying the temporal-differencing di-

rectly to the image time series. This allows us to not

only identify the source site, as with the previous filter,

but to also directly measure the wave-front amplitude,

phase speed, and distortion. We show that the evolu-

tion of the wave-front position, can be determined from

the difference-image timeseries and used successfully in

a helioseismic inversions for the atmospheric properties

at very small scales.

2. WAVEFRONT FILTERING TECHNIQUES

A Doppler-image timeseries of solar photosphere

shows large amplitude fluctuations associated with gran-

ulation, structured magnetic fields, and modal oscilla-

tions. When sufficiently well resolved, it also shows,

with much lower amplitudes, transient fluctuations due

to magneto-hydrodynamic waves and shocks. We are

here concerned with identifying propagating wavefronts

associated with spatially compact and temporally dis-

crete acoustic wave sources. These transients can be

identified against the high amplitude background fluc-

tuations because they occur on shorter time scales com-

pared to the evolutionary time of the granulation, mag-

netic fields, or p-mode coherence (Bahauddin & Rast

2021). In other words, the later components comprise

of a relatively slowly varying background on top of which

the transient propagation occurs. Extraction of the

acoustic transient signal from an observed time-series

thus requires observations with: (1) adequate spatial

resolution, (2) high temporal cadence, and (3) sufficient

local signal to noise.

For direct detection, a discernible signal can be ex-

pected if the perturbation associated with the transient

has, at a minimum, a higher amplitude than the tem-

poral variance of the background over the time period

of the transient wavefront crossing (local SNR equal

to one). Under this circumstance, identification of the

acoustic perturbation depends only on the spatial pixel

scale and the temporal cadence. If the pixel scale of the

observations is taken to be fixed, the temporal increment

between frames can be tuned for the optimal detection

of the propagating wave-front.

For a typical acoustic source within the MURaM pho-

tosphere, the width of a transient impulsively-generated

acoustic-wavefront response is approximately 60 - 100

km (with some dependence on both the source physics

and depth). Nyquist sampling of this front thus requires

a minimum spatial pixel scale of about ∆x = 30 km.

Since the sound speed of the solar photosphere cs ∼ 8

km/s, a temporal resolution of ∆x/cs ≃ 4 seconds is

needed to resolve the wavefront as it travels. In other

words, the minimal temporal sampling interval should

be ∆t/2 ≃ 2 seconds. The spatial pixel scale in the

simulations we employ is 16 km and the temporal inter-

val between saved snapshots is 2 seconds, so the impul-

sive wavefront is resolved in both space and time. The

Daniel K. Inouye Solar Telescope (DKIST) will be able

to achieve similar values (Rimmele et al. 2020).

When the amplitude of the acoustic-source wavefront

perturbation is smaller than the variance of the back-

ground (SNR less than one) it is necessary to employ

filtering techniques that amplify the signal (the acoustic

wavefront perturbation) and/or suppress the noise (the

p-modes and convective background). Since, the local

source-generated wavefront is usually orders of magni-

tudes weaker than the background, and since its fre-

quency content overlaps that of the p-modes, and in part

the granulation, methods other than linear filtering and

frequency domain noise reduction are needed.

2.1. Critical assessment of previously proposed

convolutional filter

In our previous work (Bahauddin & Rast 2021), we

employed a convolutional neural network to identify

sites of local acoustic emission in a MURaM simula-

tion of the solar photosphere. The neural network was

trained to identify propagating wavefronts produced by

sources even when the wavefront to background SNR
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was less than one. In order to train the neural network,

we utilized, as a local source response template, the

Green’s function solution to the wave equation in two

dimensions. Using this template, a convolutional neural

network was trained to provide a probabilistic assess-

ment of whether a source is located at a given place and

time based on the idealized propagating wavefront sig-

nal that such a site should produce. Following successful

training, we unwound the interlaced convolutional ker-

nels of the deep-learning algorithm, and deconstructed

them into a set of linearly summed traditional opera-

tors. That strategy enabled us to convert the convolu-

tional neural network into an image filter. It entailed

the sequential application of a spatiotemporal convolu-

tion followed by temporal convolution with a threshold

clipping. Importantly, the temporal convolutional ker-

nel that the neural network defined was equivalent to an

n-difference filter in time (Bahauddin & Rast 2021).

While powerful, subsequent work has uncovered some

drawbacks to this method. These arise for two funda-

mental reasons. The convolutional neural network was

trained on the full spatio-temporal extent of the expand-

ing wavefront (the Green’s function solution). Wave-

fronts generated by and in the presence of vigorous gran-

ular flows are, however, often spatially incomplete or

significantly asymmetric in amplitude; often only a por-

tion of the expanding front is visible. For example, a

wave generated by a source embedded in an intergranu-

lar lane often manifests as a partial wavefront propagat-

ing across the neighboring granule to one side but not

the other. The convolutional kernel, defined by a neural

network trained on the complete Green’s function solu-

tion, poorly maps onto these partial wavefronts. Addi-

tionally, the expansion of small granular structures can

mimic the circular wavefront kernel when expansion ve-

locities are close to the local sound speed. The first of

these results in false negative detections while the latter

produces false positives.

More generally, as mentioned previously, convolu-

tional filters carry the risk that the pattern one is look-

ing for is imprinted on the data by the convolution it-

self. We have found that, after applying our previous

method, strong false positive detections occur at sites

of rapidly-evolving localized dynamics, which approx-

imate Dirac delta-function-like impulses in the image

time series. If such impulses in the image time-series

spuriously arises from an observational artifact, such as

a energetic-particle hit on the detector or an abrupt ex-

plosive event on the Sun, they can be identified by care-

ful analysis and the neural network can be trained to

register such events as a false positives. On the other

hand, if the apparent impulse arises in the Doppler map

due to rapid dynamics, such as a vanishing granule or

very sharp downflow amplification in an intergranular

lane, it is much more difficult to objectively define and

detect, and it is very difficult to train a convolutional

neural network to avoid it. Such dynamical events are

thought to be possible source of acoustic emission, so it

is particularly important not to bias the wavefront de-

tection in their favor simply because they are spatially

and temporally localized.

2.2. Improved filtering technique

Fortunately, these difficulties can be mitigated by

eliminating the spatiotemporal convolutional compo-

nent of the previously developed filter and applying the

neural-network motivated temporal-difference directly

to the image time series. Moreover, direct application

of the difference filter to the image time series allows it

to be tuned to the propagating wavefront speed, facili-

tating selection of those wavefronts with specific phase

speeds. Since the phase speed of the wavefront depends

on the source depth, the atmospheric sound-speed strat-

ification, and the flows through which the wavefront is

propagating, measuring the propagation and distortion

of a wavefront of a particular phase speed allows inver-

sion for the atmospheric properties through which that

wavefront has propagated (see §3.3 below).

In this section, we will demonstrate why temporal dif-

ference filters are useful for extracting low-SNR acous-

tic waves propagating through and in the solar photo-

sphere. We begin by highlighting that the application

of an n-difference filter to an image timeseries is equiva-

lent to taking successive derivatives of the signal using a

forward finite-difference scheme of first-order accuracy.

Such an operation amplifies high temporal-frequency

components of the images and suppresses slowly evolv-

ing ones. Since, the n-difference filter measures the per-

turbation over an n−point stencil, a well-resolved slowly

evolving perturbation of nearly constant value across the

stencil returns a nearly null value. A signal evolving

quickly, on the other hand, returns a difference measure

of large absolute value. Thus, the n-difference filter com-

bines two aspects of canonical motion detection algo-

rithms: temporal differencing (e.g., Shuigen et al. 2009,

and references therein), which in motion detection ap-

plications typically employs only adjacent timesteps (a

first derivative, though cf., Jain & Nagel 1979; Paul

et al. 2017), and background subtraction, implicitly in-

cluded in our scheme by the higher derivative suppres-

sion of non-evolving or slowly-evolving image contribu-

tions. Importantly, direct application of the temporal

difference filter to the image time series, outside of the

convolutional neural network, removes the risk of spuri-
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ous source introduction by the spatiotemporal convolu-

tion discussed above.

In the solar photosphere, there are two primary contri-

butions to Doppler images that act as background noise:

granular motions and the modal oscillations. Largely

obscured by these are the propagating acoustic wave

fronts that originate with discrete sources. Fourier spec-

tra of Doppler-image time series show power distributed

in two major lobes: a lower frequency lobe, lying below

the photospheric sound speed, due to granulation, and

a higher frequency lobe, composed of ridges, or in short

time-series unresolved ridges, due to modal oscillations.

This is the basis for the well-know subsonic filter (e.g.,

Hill 1988; Title et al. 1989; Schou et al. 1998), that is

used to separate granular motions from p-modes. Local-

ized acoustic sources produce impulsive responses that

propagate horizontally in the photosphere with ampli-

tudes and phase speeds that depend on the source depth

(Figure 4). For source depths ranging from about 1.6

Mm below the photosphere to within the photosphere

itself, the wavefronts in the photosphere propagate with

speeds ranging from about 8 to 13 km/s (mean sound

speed on the MURaM τ = 1 surface is 7.75 km/s). Since

the amplitude of a source-generated wavefront in the

photosphere decreases rapidly with source depth, a filter

that removes all power above a line with slope 13 km/s

removes the bulk of the solar p-mode power while leaving

the granulation and most of the potentially detectable

source-generated wavefronts largely intact. The wave-

fronts produced by sources deeper than 1.6Mm, and thus

with phase speeds higher than 13 km/s, have extremely

small amplitudes in the photosphere due their expan-

sion with distance from the source location, and are

thus largely undetectable there. Hence, unless the am-

plitudes of deep sources in the Sun is very much higher

than they are in MURaM, the 13 km/s cut-off has little

effect on source detection, and one can remove most of

the p-mode contribution with a 13 km/s low-pass Fourier

filter. The remaining Doppler signal includes both gran-

ular motions and the local source wavefield, leaving the

challenge of removing the granulation contribution.

Here we apply the 13 km/s low-pass Fourier filter to

better illustrate the effectiveness of the n-difference fil-

ter in eliminating granulation noise, but note that this

Fourier filtering is not always necessary and may be un-

desirable. We discuss its benefits and drawbacks further

in Section 2.4 below. After applying the 13 km/s fil-

ter, we can compare the amplitude of an idealized wave

signal to the standard deviation of the granular mo-

tions when both are measured after application of the n-

difference filter. In detail, the wave signal is taken to be

vertical velocity of the two-dimensional Green’s function

Figure 1. Ratio of the amplitude of a propagating wave
to the standard deviation of the granular fluctuations (SNR)
after application of an n-difference filter, as a function of n.
In the upflow regions of granulaiton, the SNR quickly rises for
n ≤ 3 and plateaus near its maximum n ≥ 5− 6. These are
similar values to those deduced from a convolutional neural
network (Bahauddin & Rast 2021).

solution for the wave-front emitted from a photospheric

source after it has traveled 500 km horizontally at the

mean photospheric sound speed. The source is taken to

be Gaussian with a spatial σ = 16 km and a temporal

σ = 2 s, and an amplitude of 1 km/s. With this initial

condition, the wave-front amplitude of the Green’s func-

tion solution 500 km from the source is approximately

equal to that of the propagating-wavefronts observed in

the simulations (Bahauddin & Rast 2021). The SNR

plotted in Figure 1 is the ration of the standard devia-

tion of the n-difference of this wave signal to the stan-

dard deviation of the granulation in the 13 km/s Fourier

filtered MURaM timeseries, with the standard deviation

of the MURaM time series computed separately for the

granules and intergranular lanes.

It is evident from Figure 1 that optimal-differencing

order n (highest SNR) differs for wave propagating

across granules than for those propagating across in-

tergranular lanes. Wavefronts are much more readily

detected against the smoother and more slowly evolving

background of a granule than against the more complex

and rapidly evolving flows in the intergranular lanes,

with peak SNR after differencing equal to 6 in granular

regions and 0.14 when the wave is viewed against the in-

tergranular lane background. With a sampling period of

2 second, the fastest sampling rate available for the MU-

RaM data cube we analyze, the half-power point (0.707

relative to peak) of the SNR over granules occurs when

an n = 3 difference is applied. Although it is possible to

obtain better SNR by using higher n, high n-differences

can introduce artifacts, and it is advantageous to keep

the n as low as possible while still gaining significant

reduction of the granulation contribution. For the re-

mainder of this paper, we focus on the 3-difference filter



5

and its use in measuring wavefront propagation across

regions of granular upflow.

2.3. Filter fine tuning

As previously indicated, the difference filter we pro-

pose can be tuned to account for the the temporal ca-

dence of the observations, the evolutionary time scale

of the background flow, and the phase speed of the

small-amplitude source-generated wavefronts in the pho-

tosphere. A successful nth derivative forward-difference

scheme measures the change in the signal at each spatial

location using n+ 1 time steps over a time period dur-

ing which the background is nearly unchanged and the

signal changes significantly. An over-sampled signal has

nearly constant value over the stencil and returns very

low amplitude differences. The same is true of a well-

resolved signal, which changes only a small amount over

the n timesteps that contribute to the difference, and

so also returns a low value under the n-difference oper-

ation. A signal with evolves fast compared to the sam-

pling period, on the other hand, returns a large value.

However, because the n-difference operation measures

the signal using an n + 1 point stencil, it also yields a

small-amplitude result if the signal is under-sampled, in

which case the difference signal is under resolved and

has non-zero values over only a fraction of the stencil.

These behaviors are illustrated by Figure 2 which

plots the result of applying a 3-time-step difference fil-

ter (first-order forward-difference third-derivative [-1, 3,

-3, 1] stencil) to a narrow idealized Gaussian pertur-

bation propagating past a fixed position with speed v.

When the signal is well resolved (∆t = ∆x/4vph), the

3-difference timeseries has small amplitude, and when

the signal is critically-sampled (∆t = ∆x/vph), it has

maximum amplitude. When the the signal is under re-

solved the characteristic temporal-difference waveform

is lost. In the case illustrated, the maximum amplitude

of the under-sampled difference is the same as that for

critical sampling (compare the third and fourth rows in

Figure 2), but this is a special case. For clarity, the

signal chosen for the illustration in Figure 2 is perfectly

aligned with the sampling interval. The temporal in-

tervals were chosen so that the peak of the propagating

Gaussian is precisely sampled at the fixed spatial loca-

tion of observation. Typically that is not the case, and

both the waveform shape is lost and the maximum am-

plitude of the difference drops when the sampling rate

is sub-critical.

Thus, the temporal difference filter we propose yields

the maximum response when the signal is critically sam-

pled, and the optimal spatial ∆x and temporal ∆t sam-

plings are coupled to the phase velocity vph of the per-

Figure 2. A narrow Gaussian perturbation moving with
velocity v is sampled with different temporal sampling in-
tervals at a fix spatial grid point (left column). Time t = 0
corresponds to the time the peak signal crosses that sampling
location. The spatial σ of the perturbation is 16 km (the sig-
nal is spatially sampled at the Nyquist limit of the MURaM
spatial frequency) and the velocity of the perturbation is 8
km/s (photospheric sound speed). When the perturbation
is over-sampled (first two rows), application of 3-difference
yields low amplitude at all times (right column). For under-
sampled perturbation (bottom row), the 3-difference opera-
tion fails to produce a usable n-difference signal (see text).
When the perturbation is critically sampled (third row), sat-
isfying the relationship ∆t = ∆x/vph, the 3-difference oper-
ation produces the strongest response.

turbation, ∆t = ∆x/vph. Since the SNR achieved de-

pends on the sampling rate relative to both the sig-

nal and noise timescales, the most effective filter over-

samples the noise (in our case the granulation) and

critically samples the signal (in our case the propagat-

ing wavefront). Any perturbation that has v > vph
is sparsely sampled (sub-critical sampling) and yields

low amplitude temporal difference on application of the
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Figure 3. Power (integrated amplitude squared) of the 3-
differenced signal amplitude for varying signal velocity and
temporal sampling period in a MURaM grid (16 km spa-
tial pixel). The dashed white curve represents the criterion
∆t = ∆x/vph where optimal sampling is achieved and the
amplitude of the difference signal is maximum. The dashed
horizontal black line indicates the approximate sound speed
at the surface of MURaM photosphere, and intersects the
dashed white curve at the optimal ∆t sampling of 2 seconds
for a photospheric source. The phase speed of wavefronts
generated by deeper sources are higher and therefore must
be sampled at a higher cadence for optimal sampling. In-
set: Power of the 3-difference signal amplitude vs temporal
sampling period for v = 8 km/s. For clarity, the relation is
arbitrarily fit by a third order polynomial (dashed line).

difference filter. Perturbations with v < vph are over-

sampled and also produce low difference amplitudes, and

the difference filter can be tuned to isolate propagating

disturbances with particular phase speed. The optimal

three-difference sampling rate for perturbations of dif-

fering phase-speeds are plotted in Figure 3 for fixed 16

km spatial sampling. The difference-signal peaks when

the sampling period is critical, and falls away from that

value for constant perturbation speed. The observa-

tional cadence needed for given spatial resolution can

thus be tuned to extract wavefronts of particular phase

speed. Note that, contours of constant difference power

are smooth for the Figure 3, but in reality are discrete

because the spatial grid spacing is fixed and the signal

is aligned with the sampling interval on the grid as the

sampling period changes continuously.

2.4. Filter summary

In summary, we have improved the wavefront filter

previously employed (Bahauddin & Rast 2021) to miti-

gate the drawbacks associated with convolutional oper-

ators. This was done by applying the neural network

motivated temporal-difference kernel directly to the im-

age time series. This updated filter has the advantage

that it can be tuned to the phase speed of the propagat-

ing wavefront, and thus allows observational differenti-

ation of excitation events occurring at differing depths.

Explicitly, the filter we employ consists of the following:

1. Take three successive differences of time series in

time. In our case the cadence of the simulated

MURaM image time series is 2 seconds and the

spatial sampling is 16 km, and we difference con-

secutive images, but a robust observational strat-

egy would be to take an image timeseries with high-

est spatial resolution and as rapid temporal ca-

dence as possible, subject to the signal-to-noise re-

quirements, and then, in post-processing, to sam-

ple that time series with a cadence that critically

samples the phase speed of the targeted perturba-

tion.

2. Apply a spatiotemporal Fourier filter to the

difference-image time series to remove perturba-

tions with phase speeds greater than 13 km/s.

This step is helpful in removing much of the p-

mode power that can overwhelm the low ampli-

tude signal, but it can also introduce spurious pat-

terns with phase speeds of 13km/s and occasional

single-pixel artifacts. This step is redundant and

can be skipped if the interest is only in the highest

amplitude wavefronts. These are readily visible in

the difference images without application of the

13 km/s filter (see video files included in Supple-

mentary Materials). In practice, we compare non-

Fourier-filtered and Fourier-filtered image time se-

ries, using the filtered images for initial discovery

of weak signals and the non-filtered images for ver-

ification and analysis.

3. Clip large values in the filtered image time se-

ries by restricting the residual map to values be-

tween −0.1 and 0.1 km/s. This step saturates

any extreme values introduced or amplified by

the temporal difference. Most of these are asso-

ciated with the evolution and movement of granu-

lar/intergranular boundaries.

We have applied 3-difference temporal filter described

above to reanalyze the same Doppler-image time series

used in our previous study (Bahauddin & Rast 2021).

We have found that many of the source sites identified

are common to the two techniques, though some false

positives introduced by the previous convolutional fil-

ter have been avoided with the new filter. Moreover,

the general properties of the source locations are com-

mon to the two techniques. Acoustic sources are fre-

quently found in and near intergranular lanes, partic-

ularly at locations of complicated mixed flow structure

or sudden local downflow enhancement, and as previ-

ously, multiple sources often occur in close proximity.

However, with the new filtering technique, the strongest

and most-visible sources tend to be shallower. This is
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Figure 4. Snapshot of surface line-of-sight velocity (top) and the corresponding 3-difference temporal filter images (bottom)
illustrating the response of the atmosphere to a strong isolated impulsive source produced by the simulated convections. Images
span 48 s (simulation time stamps (t = 1588 s, 1600 s, 1612 s, 1624 s and 1636 s), and show a small subdomain of run O16b from
Rempel (2014) with non-grey radiative transfer and a domain extended an additional 1.024 Mm upwards into the chromosphere.
The timestamps are consistent with those in the video included in the Supplementary Materials.

because direct temporal differencing favors those pertur-

bations with the largest amplitudes in the photosphere.

The statistics of the acoustic sources, their depth distri-

bution and the physical mechanisms which underlying

them, are thus sensitive to the particular filter applied,

and fully understanding those systemics and careful as-

sessment of selection effects are required before using

these techniques to uncover the statistical properties of

the sources themselves. We leave that for future work.

3. OBSERVATIONAL IMPLICATIONS

In the solar photosphere, an important signature of an

impulsive acoustic source at depth is a horizontally prop-

agating wavefront with a time-dependent phase speed

that depends on both the source depth and sound-speed

profile through which the impulse response has propa-

gated. Since the photospheric signal is the signature of

a three dimensional front propagating through a two-

dimensional surface, the deeper the source, the more

rapid the initial phase speed as the front pierces the

photosphere. Subsequently, as the wave expands, the

front speed asymptotes to the sound speed at the source

depth. The observed photospheric wavefront shape and

propagation speed thus captures information about the

source depth, the mean atmospheric stratification, and

any inhomogeneities in the atmosphere through which

the wavefront has propagated.

3.1. Wavefront propagation

Application of the the temporal 3-difference filter de-

veloped in Section 2 to a MURaM photospheric Doppler

image time-series reveals that, in the simulation, acous-

tic sources are frequently found in and near intergran-

ular lanes. Figure 4 displays the temporal evolution of

the photospheric Doppler velocity before (top row) and

after (bottom row) application of the difference filter to a

region surrounding a strong isolated source. Evident in

the time series is an acoustic wavefront, with a width of

approximately 6 pixels, propagating across the adjacent

granule.

Once the spatiotemporal location of the source in the

photosphere (the site of first photospheric emergence of

the wavefront) is identified in the difference-filter image

timeseries, the wavefront propagation in the unfiltered

line-of-sight velocity images can be followed via an az-

imuthal average. Figure 5 plots the time evolution of the

azimuthally averaged flow over a 71 degree subsection

of the propagation region (indicated in the figure inset).

The time series shows the undispersed propagation of an

acoustic wavefront with a spatial scale of about 100 km.

The perturbation is launched near the edge of an in-

tergranular lane and propagates across a large granule.

Advection by the granular flow slows the propagation

speed for the first ∼ 0.15 Mm, with the initial velocity

of the wavefront approximately ∼ 8 km/s. After passing

through the center of the granule, the propagation veloc-

ity saturates at ∼ 9.4 km/s before the front disappears

at the opposite side of the granule.
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Figure 5. Azimuthally averaged photospheric line-of-sight
velocity (normalized by its mean and offset vertically with
time) as a function of radial distance from the source site
(r0), illustrating the acoustic response of the atmosphere
to a strong, isolated source in the intergranular lane. The
plots are stacked vertically with timestamps starting from
t = 1596 s (lowest plot) and ending at t = 1656 s (upper-
most plot), with ∆t = 2 s between them. Inset: The region
over which the azimuthal average was computed, showing
the granule at t = 1614 seconds and colored markers cor-
responding to those in the main figure and indicating their
radial distance from the source site. The ×-mark in the inset
indicates the photospheric position of the source assuming an
approximately circular wavefront. The annular region delin-
eated by the inner and outer boundaries between the radial
spokes is the region over which source wavefield seismology
is conducted in Section 3.3.

It is important to note that, as this example shows,

it is necessary to account for the horizontal granular

flow when determining the intrinsic propagation speed

of the wavefront, which can then be used to estimate the

source depth (Section 3.2 below). For the source depth

analysis we present in the next section, we approximate

the horizontal granular velocity by spatial and tempo-

ral average of the photospheric flow: taking the tempo-

ral mean over the duration of the event and the spa-

tial mean over a single direction in propagation region,

as indicated by the color bar in the inset of Figure 5.

We note that similar correction for horizontal advection

when measuring the wavefront speed in high-resolution

observations will be difficult, and this difficulty will have

to be addressed before observational application of the

inversion techniques we demonstrate in Section 3.3 is

possible. We have future plans to extend the techniques

presented Section 3.3 to allow simultaneously inversion

for the source depth, the atmospheric properties, and

three-dimensional flow structure, with iteration for the

source depth as part of the solution.

3.2. Source depth

To illustrate the dependence of the wavefront prop-

erties on the depth of the source, we examine the re-

sponse of the horizontal-mean-MURaM atmosphere to

short and confined perturbations. Investigation of the

evolution of the wavefront amplitude, requires solution

of the full three-dimensional wave equation governing

pressure perturbations in the stratified atmosphere. In-

vestigations of the wavefront propagation speed, on the

other hand, can employ the less computationally in-

tensive ray-tracing approximation, calculating the in-

tegrated travel time from the source to the horizon-

tal mean-tau-equals-one surface along rays between the

source and that surface. Here, we employ a second-order

finite-difference spatial-derivative approximation and a

fourth order Runge-Kutta time- integration scheme to

solve the full three-dimensional wave equation. This

simplified numerical approach is sufficient given the very

short durations of the simulations. The initial condi-

tion is taken to be a three dimensional Gaussian with

a fullwidth-at-half maximum of 16 km. Temporally the

source is also take to be Gaussian, with a fullwidth-at-

half maximum of 2 seconds centered 10 seconds after

simulation starts.

The amplitude and speed of the wavefront at mean

optical depth unity, as a function of horizontal distance

from the projected source location (the location in the

photosphere which lies vertically above the source at

depth), are plotted in Figure 6. Three source depths are

illustrated, and the wavefront speed profiles are shown

for three different atmospheres: the horizontal-mean

MURaM atmosphere (black), the horizontal-mean MU-

RaM upflow atmosphere (red), and the horizontal-mean

MURaM downflow atmosphere (blue). As expected the
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amplitude of the wavefront drops as (r2 + d2)−1 (indi-

cated for two source depths, 0 km and 150 km, with the

black curves), with wavefronts from deeper sources show-

ing lower amplitudes in the photosphere as they emerge.

The phase velocity of the wavefront drops rapidly as it

first passes through the photospheric surface and then

more slowly with distance after that. The asymptotic

front speed is equal to the mean sound speed at the

source depth (indicated in the figure with horizontal

dotted fiducial lines). The deeper the source, the flat-

ter the wavefront as it penetrates the photosphere, and

thus the higher the initial phase speed. The wavefront

from deeper sources also takes longer to reach its asymp-

totic value because a greater distance from the source is

required before the ray path can be approximated as

horizontal. Thus, if the wavefront is visible for long

enough, both the early evolution of the wavefront prop-

agation velocity and its saturated value can be used to

determine the depth of the source, and with that and

the observed wavefront amplitude the source amplitude

at depth.

The wavefront illustrated by Figure 5, shows an

asymptotic velocity of ∼ 9.4 km/s after correction for

advection by the spatial and temporal mean granular

horizontal flow. In the mean MURaM upflow atmo-

sphere, this corresponds to a source depth of approx-

imately 160 km. Measurement of the wavefront at mul-

tiple depths in the MURaM solution, a measurement not

possible observationally, suggests that the source depth

is ∼ 192 km. Both of these measurements are uncertain,

and likely in practice determination of the source depth

will require simultaneous inversion for it along with the

thermodynamic structure of the local atmosphere and

the flow velocities with depth. In the next section, we

take the first step in demonstrating the feasibility of such

inversions, by taking the source depth for this event to

be fixed at 192 km and using the observed wavefront

speed to invert for the atmospheric properties between

that depth and the photosphere.

3.3. Source wavefield seismology – proof of concept

To illustrated the possibility of using the local acous-

tic source wavefield in helioseismic inversions, we assume

that the acoustic wave motions are adiabatic and that

medium varies slowly compared to the wavelength of the

sound. The motion of the wavefront can then be approx-

imated using geometric optics, and we invert the gener-

alized eikonal equation for acoustic waves in a moving

inhomogeneous fluid,

|∇θ| = c0
cs + vh

Figure 6. Top: Change of amplitude A (normalized by the
source amplitude) at the photosphere as a function of hori-
zontal distance from the source position, for various source
depths. Bottom: Change in photospheric wavefront phase
velocity vph with distance. As the wavefront passes through
the surface, wavefronts from shallower sources undergo faster
change in phase velocity and saturate at a lower phase speed
(the mean sound speed at the source depth) with distance.

(e.g., Blokhintzev 1946; Heller 1953; Kornhauser 1953;

Ostashev & Wilson 2016), for the adiabatic sound speed

cs (reference soundspeed c0) and the flow velocity nor-

mal to surfaces of constant phase (θ = constant) vh.

In other words, we find the time-averaged cs and vn
everywhere within that portion of the domain the wave-

front samples, so that the phase velocity of the wave-

front vph = cs + vn in the photosphere, as predicted by

geometric optics, matches that observed.

The inversion proceeds as follows. We assume that

the time-averaged vertical velocity and the horizontal

velocities follow linear profiles and that the sound speed

follows a cubic profile with depth, with each column
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independent:

ux(x, y, z) = ux(x, y, z = 0) +mx(x, y)z

uy(x, y, z) = uy(x, y, z = 0) +my(x, y)z

uz(x, y, z) = uz(x, y, z = 0) +mz(x, y)z

cs(x, y, z) = cs(x, y, z = 0) +mcs1(x, y)z

+mcs2(x, y)z
2 +mcs3(x, y)z

3 .

The inversion algorithm adjusts the coefficients of these

polynomials, mx,my,mz, and mcs1−3, iteratively. The

region over which the inversion holds is defined by the

acoustic ray-paths between the source and the photo-

spheric wavefront position as shown in Figure 5). The

time-averaged solution is thus valid over an annular

three-dimensional wedge decreasing in horizontal extent

with height (see Figure 7).

The inversion is initialized with the location of the

source, the time-averaged photospheric line-of-sight and

horizontal velocities, and the time-averaged horizontal-

mean depth profile of the sound speed. The average

velocities in the photospheric wavefront propagation re-

gion are held fixed over all iteration cycles of the in-

version. The sound speed profile serves only as an ini-

tial condition, and the point-wise time-averaged sound

speed and flow velocities beneath the photosphere are

updated as the inversion progresses. We note that,

when conducting similar inversions using solar observa-

tions rather than simulations, specification of the source

depth and initialization with the time-average horizon-

tal photospheric velocity may prove challenging, and

more advanced inversion techniques may be required to

obtain a solution. Here, in our proof-of-concept case,

with these quantities well initialized, a simple gradient-

descent solver is sufficient to determine the time-average

velocity and sound speed at all locations in the inversion

region.

Given the initial values of the coefficients and point-

wise measurements of the time-averaged velocities and

sound speed in the photosphere, a piece-wise linear (be-

tween grid boundaries) integration of the eikonal equa-

tion is calculated to obtain the ray path and travel time

from source location to photosphere. The direction the

ray propagates is determined by the spatial variation of

time-averaged sound speed, which is accounted for by

diffraction at the grid cell boundaries, and by advection

by the horizontal and vertical velocities. The later is

determined by the flow velocities in each grid cell and

the cell crossing time. The time and location that the

rays emerge in the photosphere determines the propa-

gation of the wavefront there, and this can be directly

compared to the observed photospheric wavefront.

Figure 7. Comparison between the original MURaM at-
mosphere and the line-of-sight velocity uz in (a), horizontal
velocity magnitude uh in (b), and sound speed cs in (c) as de-
duced from inversions of the source wavefield, at five heights
between the source depth (-192 km) and photosphere (0 km).
For each, the simulation values are shown in the top row, val-
ues obtained by inversion are shown in the middle row, and
point-wise correlation between them is plotted in the bottom
row.
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Figure 8. Coefficient of determination (R2) between MU-
RaM atmospheric parameters and inverted parameters are
calculated as a measure of strength of the model. The cor-
relation rapidly decreases with depth below d ≈ −80 km of
the photosphere.

Quantitatively, the difference between the two, the

loss function, is taken to be the mean-squared-difference,

over all image pixels, between the ray-based wavefront

image timeseries and a wavefront image timeseries con-

structed from the MURaM difference images. The wave-

front locations in the MURaM difference images are

identified as the maxima as a function of radial distance

from the source site in 44 radial directions spanning the

inversion region. The mx,my,mz, and mcs1−3 coeffi-

cients are updated to minimize this loss function us-

ing gradient descent (Tensorflow’s GradientDescentOp-

timizer function with a learning rate of 0.001) until con-

vergence is achieved. Convergence is presumed when the

loss function falls below 10−2.

Figure 7 shows the outcome of this procedure: the ac-

tual simulated (top row) and inverted for (middle row)

values of the vertical velocity uz in (a), horizontal veloc-

ity magnitude uh =
√
u2
x + u2

y in (b), and sound speed

cs in (c), at five heights in the three-dimensional domain

delineated by rays between the source and the observed

wavefront propagation region in the photosphere. The

correlation between the actual and inverted values at

each height are illustrated by the bottom row of each

subplot. The values deduced from the photospheric

wavefront inversions are close those of the true time-

averaged atmosphere over a significant range of depths.

Even with simplifications made in this proof-of-concept

test, the correlation between the two remains high to at

least 80 km, and while the accuracy of the inversion de-

creases with depth, it is provides some useful informa-

tion, particularly for the vertical flow and local sound

speed, down to a depth of about 100 km.

Figure 8 plots the correlation between the atmospheric

properties deduced from the inversion and the MURaM

atmosphere as a function of depth. We note that this

reflects both the inversion accuracy and the depth to

which the assumed polynomial profiles successfully repli-

cate the MURaM atmosphere below the photosphere.

We have found that it is necessary to use a higher or-

der polynomial approximation in the inversion for sound

speed in order to achieve an inversion that captures the

change in the MURaM simulation in this granular re-

gion, while a linear approximation is sufficient for the

vertical velocity. This is likely due to the dominant role

of stratification in determining the vertical flow ampli-

tudes. With these polynomial approximations inversion

results begin to deviate from the true profiles beyond

about 80 - 100 km depth. This is due to the in accuracy

of that approximation and the diminishing importance

of the atmospheric properties near the source in deter-

mining the photospheric wavefront motion.

The inversion appears to more poorly model the

horizontal-flow amplitude with depth than it does the

sound speed or vertical velocity. The correlation be-

tween the actual horizontal flow (computed indepen-

dently in x and y, although here only the flow ampli-

tude is illustrated) and that deduced from the inversion

deteriorates rapidly below 80 km. A higher order poly-

nomial in z was attempted but did not yield significant

improvement. The assumption of independent vertical

column profiles in the inversion may be the underly-

ing cause. Inversion for the horizontal flows likely re-

quires enforcement of horizontal continuity, motivating

fully three-dimensional inversions in the future.

4. CONCLUSION

In this work, we reported on improvements to an

image-time-series filter that was previously developed

for the detection of locally generated acoustic perturba-

tions (Bahauddin & Rast 2021). Specifically, we showed

how removal of the convolutional kernel from the filter

and direct application of image time-series differencing

results in increased fault resilience and robustness and

improved interpretability. We quantified the relation-

ships between wavefront phase speed and source depth,

and demonstrated that, because of that relationship and

the nature of the difference filter, the filter can be fine

tuned, via critical sampling, to identify the acoustic-

source depth. This leads directly to the possibility of

using high spatial and temporal resolution image time

series to conduct ultra-local helioseismic inversions, and

we demonstrated that this is, at least in principle, possi-

ble. The inversion presented here is a first step in the de-

velopment of these techniques. Application to solar ob-

servations will likely require fully three dimensional in-

versions that recover the source location and horizontal
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flow in the photosphere simultaneously with the sound

speed and flow field at depth.

While employing these methods in studies of the real

Sun will undoubtedly pose new challenges, we anticipate

that, with the advent of the National Science Founda-

tion’s Daniel K. Inouye Solar Telescope (DKIST), simi-

lar measurements will be observationally possible. This

promises new ways of investigating the subsurface dy-

namics and thermodynamics of granulation, small-scale

magnetic field generation, pores, and network elements.
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723, L175, doi: 10.1088/2041-8205/723/2/L175

Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505,

390, doi: 10.1086/306146

Schwarzschild, M. 1948, ApJ, 107, 1, doi: 10.1086/144983

Severino, G., Magr̀ı, M., Oliviero, M., Straus, T., &

Jefferies, S. M. 2001, ApJ, 561, 444, doi: 10.1086/323243

Shuigen, W., Zhen, C., & Hua, D. 2009, in 2009 Second

International Symposium on Electronic Commerce and

Security, Vol. 2, 85–88, doi: 10.1109/ISECS.2009.62

Skartlien, R., & Rast, M. P. 2000, ApJ, 535, 464,

doi: 10.1086/308845

Stein, R. F. 1967, SoPh, 2, 385, doi: 10.1007/BF00146490

Stein, R. F., & Nordlund, Å. 1991, in Challenges to
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